If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+45x-126=0
a = 9; b = 45; c = -126;
Δ = b2-4ac
Δ = 452-4·9·(-126)
Δ = 6561
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6561}=81$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(45)-81}{2*9}=\frac{-126}{18} =-7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(45)+81}{2*9}=\frac{36}{18} =2 $
| T1.4=c/1.4 | | 2m=5m-2 | | n-10+10=40 | | 84+10x=264 | | 11+2a=17 | | 3x/7=2(x-8) | | 4x^2+26x+30=60 | | 7/z=82/12 | | 4y-3y=6-5y | | 9x=63x=7 | | Y=3/2x+11 | | (36-x)+x=49 | | 27-6=n*7 | | -1+9s=89 | | 2x+5/5=x-2/3 | | 170=x-10 | | 4x-1.4=3x+1.4 | | -3-7(n-7)=6n-6 | | 5=5x-9=3x+2(x-7) | | 11x+59=213 | | 27-6=n×7 | | 10z+7z=765 | | 2(y-1)=-y-2 | | 1.1q-4.6-4.2q=-2.1q-4.6 | | 9x=63,x=7 | | 14.25=n+2n | | 3(x+6)=3(x+12) | | 5/12-6x=-6+1/12 | | 50-40=10-x | | (n/2)-10=-6 | | b/4.22=1.5 | | 5x+26=61 |